{{flagHref}}
Produtos
  • Produtos
  • Categorias
  • Blogue
  • Podcast
  • Aplicação
  • Documento
|
/ {{languageFlag}}
Selecionar a língua
Stanford Advanced Materials {{item.label}}
Stanford Advanced Materials
Selecionar a língua
Stanford Advanced Materials {{item.label}}

Como o nitinol pode fazer um sprinkler ligar

A liga de níquel-titânio, também conhecida como nitinol, é uma liga binária composta de níquel e titânio. Os dois elementos são praticamente iguais em porcentagem atômica (Nitinol 55 e Nitinol 60 são comuns). Devido às mudanças de temperatura e pressão mecânica, o nitinol tem duas fases diferentes de estrutura cristalina, a saber, a fase austenítica e a fase martensítica.

Nitinol springs

No nitinol, a austenita é chamada de fase mãe, que é a fase cristalina exibida pela liga em alta temperatura. Quando a temperatura diminui, a austenita se converte gradualmente em martensita (subfase).

No processo de transformação da martensita e da austenita, há quatro tipos de temperaturas:
As: a temperatura na qual a martensita começa a se converter em austenita durante o processo de aumento de temperatura.
Af: a temperatura na qual a martensita termina a conversão em austenita durante o processo de aumento de temperatura.
Ms: a temperatura na qual a austenita começa a se converter em martensita durante o processo de queda de temperatura.
Mf: a temperatura na qual a austenita termina a conversão em martensita durante o processo de queda de temperatura.
A transformação de fase do nitinol tem uma histerese térmica, portanto, As não é igual a Mf, pelo mesmo motivo, Af não é igual a Ms.

O nitinol tem duas características: efeito de memória de forma (SME) e superelasticidade (SE).

shape memory alloy wire

1. Memória de forma
A memória de forma ocorre quando a fase mãe de um determinado formato é resfriada de uma temperatura acima de Af para uma temperatura abaixo de Mf e forma completamente a martensita, deformando a martensita abaixo da temperatura Mf. Depois de ser aquecido abaixo da temperatura Af, com a transformação de fase reversa, o material restaurará automaticamente sua forma na fase-mãe. De fato, o efeito de memória de forma é um processo de transição de fase induzido termicamente do nitinol. Ele se refere à capacidade do nitinol de se deformar em uma determinada temperatura e, em seguida, restaurar a forma original, não deformada, quando a temperatura for superior à sua "temperatura de transição".

2. Superelasticidade
A chamada superelasticidade refere-se ao fenômeno em que a amostra produz uma deformação muito maior do que a deformação limite elástica sob o efeito de forças externas, e a deformação pode ser restaurada automaticamente durante a descarga. Na fase mãe, devido ao efeito do estresse externo, a deformação desencadeia a transição de fase martensítica, de modo que a liga apresenta comportamentos mecânicos diferentes dos materiais comuns. Seu limite elástico é muito maior do que o dos materiais comuns. E ele não segue mais a Lei de Hooke. Em comparação com o efeito de memória de forma, a superelasticidade não envolve calor.

Categorias
Sobre o autor

Chin Trento

Chin Trento é bacharel em química aplicada pela Universidade de Illinois. Sua formação educacional lhe dá uma ampla base para abordar muitos tópicos. Ele trabalha com a escrita de materiais avançados há mais de quatro anos na Stanford Advanced Materials (SAM). Seu principal objetivo ao escrever esses artigos é oferecer um recurso gratuito, porém de qualidade, para os leitores. Ele agradece o feedback sobre erros de digitação, erros ou diferenças de opinião que os leitores encontrarem.

Avaliações
{{viewsNumber}} Pensamento sobre "{{blogTitle}}"
{{item.created_at}}

{{item.content}}

blog.levelAReply (Cancle reply)

O seu endereço de correio eletrónico não será publicado. Os campos obrigatórios estão assinalados*

Comentário*
Nome *
E mail *
{{item.children[0].created_at}}

{{item.children[0].content}}

{{item.created_at}}

{{item.content}}

blog.MoreReplies

DEIXAR UMA RESPOSTA

O seu endereço de correio eletrónico não será publicado. Os campos obrigatórios estão assinalados*

Comentário*
Nome *
E mail *

Notícias e artigos relacionados

Mais >>
Lingotes de tântalo em componentes de compressores de gás resistentes à corrosão

A seleção de materiais para os vários componentes dos compressores de gás é importante para garantir a durabilidade, a confiabilidade e a eficiência por um longo período. Em componentes sujeitos a ataques de meios agressivos, os lingotes de tântalo surgiram como uma das principais opções devido à sua excepcional resistência à corrosão, combinada com a estabilidade em altas temperaturas.

SAIBA MAIS >
Diferentes tipos de wafers de silício

Muitas pessoas provavelmente já trabalharam com wafers de silício sem perceber. Qualquer pessoa que já tenha tido um computador ou um telefone celular provavelmente já dependeu de wafers de silício. Como um dos principais fornecedores de wafers de silício do mercado, a Stanford Advanced Materials (SAM) recebe perguntas como "O que é um wafer de silício? Ou "Que tipo de wafer de silício devo comprar para essa finalidade?" Todas essas perguntas serão respondidas por este guia completo sobre wafers de silício.

SAIBA MAIS >
Carbeto de tântalo: Um material de alto desempenho para aplicações extremas

O carbeto de tântalo (TaC) é um composto que combina a resistência do tântalo com a dureza do carbono. Veja a seguir por que esse material é tão valorizado, o que o torna único e onde ele é usado.

SAIBA MAIS >
Deixar uma mensagem
Deixar uma mensagem
* O seu nome:
* O seu correio eletrónico:
* Nome do produto:
* O seu telefone:
* Comentários: